“Dixon Valve is a manufacturer of fittings for fluid transfer industries,” Max de Arriz, Manufacturing Engineer at the company, explained. “We’re using a large robotic arm to transfer many styles of our parts between two vertical turning centers.”

At Dixon Valve’s US manufacturing facility in Chestertown, Maryland, robotic arms are commonplace in production line cells, used for part transfers in the manufacturing process.

Dixon Valve has attached a set of Onyx jaws to each robotic arm, the jaws are printed on the Mark Two industrial-strength 3D printer.

Each product line setup requires custom equipment, including tooling and grips to hold specific parts efficiently.

De Arriz, along with Automation Technician J.R.Everett, reap the benefits of their Mark Two in Dixon’s production facility.

“With Onyx we were able to re-tool a robotic arm in a manufacturing cell in under 24 hours.”

Watch Dixon Valve’s success story here:
Dixon searches for innovative production line solutions to improve productivity and better leverage resources.

New manufacturing solutions!

“Prior to using 3D printed jaws in the cell, we were machining each tool individually, and it would take a large amount of time,” de Arriz explained.

Every gripping tool needed to be either outsourced to an external machine shop or machined in house with the manufacturing capabilities at hand.

As Dixon primarily produces valves and fittings, these grippers also require strength and chemical resistance, as well as wear resistance from repeated use.

As soon as Dixon Valve unboxed their industrial strength Markforged 3D printer, they put it to work.

The Mark Two not only allowed to produce their robotic jaws quickly, but the material capabilities of the printer, including its ability to lay continuous strands of high-strength fibers into 3D printed parts, ensured reliability in a factory setting.

“Onyx is one of my favorite materials because it combines stronger composite material with the chemical resistivity of nylon,” elaborated Everett, referring to Markforged’s chopped carbon fiber nylon filament. “It hits the sweet spot for us in chemical resistance and strength.”

Hand in Hand

The Mark Two enabled Dixon Valve to produce new manufacturing solutions at unprecedented speed and cost, providing the company with a powerful new tool in their toolbox.

A robotic arm with 3D printed grippers working on the Dixon Valve factory floor.

A robotic arm with 3D printed grippers working on the Dixon Valve factory floor.

“It’s a critical component in our design process and it is really changing the way we work to the point where we are actually altering our procedures and plans to accommodate this groundbreaking product,” says Everett.

By incorporating the printer into the company’s workflow, Dixon Valve could expand and improve even further.

The ability to produce parts with esteemed strength, quality, and precision at a low cost gives Everett high hopes for Dixon’s path forward: “If I had to tell somebody on the street what’s great about this product, or what is great about Onyx, or what the coolest thing is to get out of it, I’d say it’s your imagination. If you can think of it, you can create it.”

“If I had to tell somebody on the street what’s great about this product, or what is great about Onyx, or what the coolest thing is to get out of it, I’d say its’ your imagination. If you can think of it, you can create it.”

 

Share

Leave A Comment

For security, use of Google's reCAPTCHA service is required which is subject to the Google Privacy Policy and Terms of Use.

If you agree to these terms, please click here.

This site uses Akismet to reduce spam. Learn how your comment data is processed.